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Abstract

The growth properties of nucleation mode particles were investigated. The variation of
source rates of condensable vapors in different locations and environmental conditions
was analyzed. The measurements were performed in background stations in Antarc-
tica and in Finnish Lapland and Boreal Forest stations (SMEAR I and SMEAR II) as well5

as in polluted urban sites in Athens, Marseille and New Delhi. Taking advantage of only
the measured aerosol particles spectral evolution as a function of time the formation
and growth properties of nucleation mode aerosols have been evaluated. The diam-
eter growth-rate and condensation sink have been obtained from the measured size
distribution dynamics. Using this growth rate and condensation sink, the concentration10

of condensable vapours and their source rate have been estimated. The growth rates
and condensation sinks were between 0.3–20 nm h−1 and 10−4–0.07 s−1, respectively.
The corresponding source rate of condensable vapors varied more than 4 orders of
magnitude from 103 to over 107 cm−1 s−1. The highest condensation sink and source
rate values were observed in New Delhi and the smallest values in Antarctica.15

1. Introduction

Aerosol particles are ubiquitous in the Earth’s atmosphere and affect our quality of
life in many different ways. In polluted urban environments, aerosol emissions can
affect human health through their inhalation (e.g. Donaldson et al., 1998), whilst glob-
ally, aerosols are thought to contribute to climate change patterns (e.g. Charlson et al.,20

1987). In recent years, considerable effort has been devoted to understanding how
aerosols directly affect the Earth’s radiation budget by scattering and absorbing incom-
ing solar radiation. Aerosols also affect the radiation budget indirectly by modifying
many cloud properties such as their albedo and lifetime. It is generally thought that
increases in aerosol concentrations will lead to brighter and more sustained clouds,25

thus providing additional planetary cooling.
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In order to be able to better understand the health and climatic effects of atmo-
spheric aerosols, the formation and growth processes of atmospheric aerosols should
also be better understood (Kulmala, 2003). Nucleation, the formation of ultrafine parti-
cles detected at a few nm, and subsequent growth to ∼100 nm in 1–2 days, has been
observed frequently in the continental boundary layer. Such observations span from5

northern-most sub-arctic Lapland (Vehkamäki et al., 2004), over the remote boreal for-
est (Mäkelä et al., 1997; Kulmala et al., 1998, 2001b) and suburban Helsinki (Väkevä
et al., 2000), to industrialised agricultural regions in Germany (Birmili et al., 2001) and
also to coastal environments around Europe (O’Dowd et al., 1999). The atmospheric
new particle formation rates have also been investigated by Weber et al. (1996) and10

Weber et al. (1997), and the biogenic aerosol formation by Kavouras et al. (1998). A
recent overview summarised the formation and growth properties in a global point of
view (Kulmala et al., 2004), quantifying especially the formation and growth rates of
nucleation events, where available.

The main purpose of this paper is to analyse particle formation and growth events15

in detail in order to quantify the concentration of condensable vapours as well as their
source rates. Some estimations on these quantities are already available (Kulmala
et al., 2001a) for the Finnish boreal forest. However, since such a multitude of studies
has appeared on particle formation events all over the world (Kulmala et al., 2004),
a more thorough analysis on the range of vapour concentrations and source rates is20

likely to be of interest also, especially for the needs of regional and global modelers.

2. Analytical expressions

The observed nucleation mode growth, the concentration of condensable vapour and
its source rate during the nucleation and growth events are analysed using two equa-
tions describing the rate of change of vapour concentration and particle growth (see25

Kulmala et al., 2001a). Considering condensable vapour molecules of some species,
the time dependence of the vapour concentration (C) can be expressed (see also Kul-
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mala et al., 1998) by

dC
dt

= Q − CS · C, (1)

where Q is the source rate of the vapour and CS is its condensation sink (see Eq. 4) to
the pre-existing aerosol. The growth-rate can be expressed as (Kulmala, 1988)

ddp

dt
=

4mvβmDC
dpρ

. (2)
5

Here dp is particle radius, mv is molecular mass of condensable vapour, D is diffu-
sion coefficient, and ρ is particle density. For the transitional correction factor for the
mass flux βM we use the Fuchs-Sutugin expression (Fuchs and Sutugin, 1971). The
equilibrium vapour pressure of the condensing species is assumed to be negligible.
Equation 2 can be integrated from dp,0 to dp to obtain (see Kulmala et al., 2001a):10

C =
ρ

∆tDmv
(
d2
p − d2

p,0

8
+ (

2
3α

− 0.312)λ(dp − dp,0) + 0.623λ2 ln
2λ + dp

2λ + dp,0
). (3)

Here α is the mass accommodation coefficient (i.e. sticking probability, here assumed
to be unity) and λ is the mean free path. The growth rate ddp/dt and condensation
sink CS can be obtained directly from the size distribution evolution measurements.

The aerosol condensation sink determines, how rapidly molecules will condense15

onto pre-existing aerosols and depends strongly on the shape of the size distribution
(see e.g. Pirjola et al., 1999; Kulmala et al., 2001a). The condensation sink CS is
obtained by integrating over the aerosol size distribution:

CS = 2πD
∫ ∞

0
dpβM (dp)n(dp)ddp = 2πD

∑
i

βMdp,iNi , (4)

where n(dp) is the particle size distribution function and Ni is the concentration of20

particles in the size section i . Now, with the condensable vapor concentration C from
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the Eq. (2) and the condensation sink CS directly from the size distribution evolution
measurements, by assuming a steady state vapor concentration one can estimate the
source rate Q from

Q = CS · C. (5)

3. Aerosol size distribution measurements5

3.1. Instrumentation

Sub-micron aerosol size distribution measurements are a necessary requirement for
condensable vapor and its’ source rate estimations. In this study, calculations are
based on similar instrumentation operated campaignvise or continuosly in various lo-
cations. These measurements were conducted in the course of a few years. Due to this10

and the fact that during the campaigns also the sites themselves imposed demands on
the instrumentation setups, differences in the detailed description of the measurement
devices arised. However, in all places, a differential mobility particle sizer (DMPS) with
a closed loop flow arrangement (Jokinen and Mäkelä, 1997; Aalto et al., 2001) was
utilized to obtain size distributions. The time resolution was typically 10 min in which15

time aerosol from 3 nm in diameter (In Hyytiälä, Athens, Marseille, New Delhi and An-
tactica) was sampled. The system used in Värriö had a slighly larger cutsize of 8 nm in
diameter. The upper size limit varied between 600 and 1000 nm.

More specifically, a DMPS systems consisted of two parallel devices. The first was
used to characterize the the size distrubution of ultra-fine particles (typically 3–20 nm),20

where the size classification with respect to electrical mobility equivalent diameter was
obtained with a short (0.109 m) Vienna-type (Winklmayr et al., 1991) Differential Mobil-
ity Analyzer (DMA). The particles were counted with a TSI 3025 Ultra-fine Condensa-
tion Particle Counter (Stolzenburg and McMurry, 1991). The other half of the DMPS-
system was dedicated to Aitken and accumulation particles (typically 20–700 nm). It25
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comprised of a longer (0.28 m) Vienna-type DMA and a TSI 3010 Condensation Parti-
cle Counter (Quant et al., 1992). Prior to the size classification, aerosol particles were
exposed to a radioactive β-source, which ensured the Boltzmann charge equilibrium
in the aerosol population and enabled particle classification based on their electrical
mobility. Total sub-micron aerosol number concentrations were obtained from the inte-5

grated size distributions. Sheath flows in the DMAs adjusted at each site to yield the
most useful measurement size range and time resolution. Typically the sheath flows
varied between 5 to 10, and 10 to 25 l min−1 for long and short DMA, respectively.

The aerosol sampling inlet of the DMPS systems was located at 2 m height above
ground at Hyytiälä and Värriö stations. In the campaigns, the inlet stucture extended10

up to 3 m heigh above the surface (Marseille and Athens). The DMPS system in New
Delhi was placed in the 5th floor next to a window. The inlet tube was placed outside of
the window so that the inlet was 15 m above the ground level and 0.5 m from the wall of
the building. In Antarctica, the inlet was placed 2.5 m above the container roof, which
was about 3 m above the ground. The sample air was led through a vertically-placed,15

60 mm steel tube with a total flow of 26.5 l min−1. The sample was taken from the main
flow and led to the DMPS system through a 30 cm long stainless steel tube having a
diameter of 6 mm.

The aerosol size distribution was obtained from the raw data through an inversion
method, which included charging probabilities according to Wiedensohler (1988) and20

DMA transfer functions by Stolzenburg (1988) as well as counting efficiencies of the
particle counters based on Mertes et al. (1995) for CPC 3010 and laboratory calibra-
tions for CPC 3025 (Aalto, 2004). Losses in the inlet tube were estimated based on
laminar flow diffusion theory (e.g. Brockmann, 2001). In the Marseille and Athens cam-
paign an external permapure drier was used to remove excess water from the aerosol25

particles. This ensured that the sampled aerosol population went through the sizing
system as dry particles. This, in turn, increased losses in the sampling lines. The
effect of the drier was not taken into account in the Athens data analysis.

During the Marseille and Athens intensive field campaigns, supermicron aerosol size
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distributions were measured with an Aerodynamic Particle Sizer (APS-3320, TSI Inc,
USA). This instrument extended the measurement range up to approximately 10µm
(Armendariz and Leith, 2002). The APS, however, used aerodynamic size as a basis
of the classification whereas the DMPS used the electrical mobility equivalent diameter.
They are related to each other through an unknown density of the particles. Combined5

size distributions from these two instuments was obtained through fitting the DMPS
and the APS size distributions in a least-squares sense so that the largest sizes of the
DMPS mached the lower boundary of the APS size distributions. The APS was not
used in other locations, which therefore narrowed the observed size range. However,
the effect of larger particles to the condensable vapor concentrations and source rate10

estimations were typically less than 5% in Hyytiälä and coastal Mace Head site in
Ireland (Dal Maso et al., 2002).

3.2. Measurement sites

The aerosol size distribution measurements related to this study with DMPS-systems
were conducted at six different locations: from Finnish Arctic (Värriö) to Boreal forest15

(Hyytiälä) and further south to the Mediterranean (Athens and Marseille) and India
(New Delhi). The southernmost measurement site was located in Antarctica (Finnish
research station Aboa). Such variety in studied environments enabled us to achieve
maximal variability both in the condensable vapour concentrations and source rates
of these vapours. Data was collected either campaignwise (Athens, Marseille, New20

Delhi and Antarctica) leading to datasets of 3–4 weeks or utilizing stable measurement
facilities (Hyytiälä and Värriö), where the amount of accumulated data is several years.

The SMEAR I station is located in Värriö (67◦46′ N, 29◦35′ E), 250 km north of the
Arctic circle in Eastern Lapland, less than 10 km from the Finnish-Russian border. The
DMPS measurements were done on top of a hill 390 m above sea level (a.s.l.). There25

are no towns or industry close by, and thus practically no local pollution. The near-
est major pollution sources are Montschegorsk located 150 km east and Nikel located
190 km north of the station. The measured air is reperesentative of the arctic boreal
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forest background when the air is not coming from these source areas.
The SMEAR II -station is located in Hyytiälä, Southern Finland (61◦51′ N, 24◦17′ E,

181 m a.s.l.). The terrain around the station is representative of the boreal coniferous
forest. The 40-year old Scots pine (Pinus sylvestris L.) dominated stand is homogenous
for about 200 m in all directions, extending to the north for about 1.2 km. The largest5

city near the station is Tampere, ca. 60 km S-SW of the measurement site. The terrain
is subject to modest height variations. A more detailed discussion and evaluation on
the aerosol instrumentation used in the SMEAR II station is given in Aalto et al. (2001);
Kulmala et al. (2001a), and in the SMEAR I station by Vehkamäki et al. (2004).

The measurement site in Athens was located in Thrakomakedones (38◦8′37′′ N,10

23◦45′29′′ E, 550 m a.s.l.). The site was located approximately 20 km north from the
city centre of Athens, Greece in the foothills of mountain Parnitha. It is surrounded by
suburban areas in the south and forests in the north. Due to the proximity of urban
areas, the site can be catecorized as urban background station. The measurement
campaign in the Athens area was conducted between 10 and 26 July 2003.15

The Marseille dataset was obtained through a campaign held in Plan d’Aups village
(43◦19′ N, 5◦42′ E, 700 m a.s.l.) approximately 40 km northeast from the city centre of
Marseille, France. The measurements were conducted between 1 and 19 July 2002.

In India the field experiment was performed at India Habitat Centre (IHC/TERI)
(28◦35′ N, 77◦12′ E, 218 m a.s.l.) in New Delhi from 26 October to 9 November 2002.20

The measuring site was located next to a traffic line in a residential area a few kilo-
meters south from one of the city centers (Connaught Place). For more details, see
Mönkkönen et al. (2004).

In Antarctica measurements were conducted at Finnish Antarctic station, Aboa
(73◦3′ S, 13◦25′ W), between 5 and 22 January 2000 and from 1 to 26 January 2001.25

Aboa is located on nunatak Basen some 130 km from the coast line of Antarctica and
480 m above the sea level. The measurement site is described in more detail by Kopo-
nen et al. (2003).
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4. Results and discussion

Four aerosol formation event days during measurement campaigns in Antarctica,
Athens, Marseille and New Delhi as well as two days form continuous measurements
performed at SMEAR I and II are presented in Figs. 1–6. In all these days, the sub-
micron size distribution data showed a clear increase in the small-particle (<10 nm)5

concentration during the late morning, followed by the subsequent growth of these par-
ticles into Aitken and accumulation mode sizes throughout the afternoon and evening.
The evolution of the size spectra illustrates thereby the growth of the nucleation mode
up to sizes of the order of 50–100 nm over periods of about 10 h. For each event period,
the start and end times of the event, the nucleation mode growth rate and condensation10

sinks were determined from the experimental data.
During the observed particle formation events, the condensation sink was usually

higher in more polluted areas. The highest value of CS (5–7·10−2 s−1) was encoun-
tered in New Delhi, while in the European cities Athens and Marseille CS was signif-
icantly (5–10 times) lower (Table 1). In non-polluted areas like Värriö (SMEAR I) and15

Antarctica, the values of CS were some 50–100 times lower than those observed in
New Delhi. Condensation sinks measured during the Hyytiälä (SMEAR II) events were
on average somewhat larger than those during the Värriö (SMEAR I) events.

The typical submicron DMPS data correspond to “dried” dehydrated aerosol sizes,
while the supermicron distributions were taken at ambient humidity corresponding to20

ambient “wet” aerosol sizes. Consequently, the response of the ambient aerosol to
humidity-induced growth will also be reflected in the calculated condensation sink. The
effect of particle hygroscopic growth factors on the calculated condensation sink has
been investigated by Kulmala et al. (2001a). In the present study we have used dry
condensation sinks, resulting in some uncertainty is involved in our estimations. How-25

ever, the typical overall underestimation of CS is between 5 and 50%, which is minor
considering the large differencies in its magnitude between the clean and polluted en-
vironments.
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Using Eq. (2) we can estimate the vapor concentrations needed to explain the ob-
served condensational growth and, furthermore, the source rate of the condensable
vapor. These estimations depend, however, on the assumptions made for the prop-
erties of this condensable vapour, such as its molecular mass, its gas-phase diffusion
coefficient and its mass accommodation coefficient on particle surfaces (see Kulmala5

et al., 2001a, for details). Luckily, the needed vapor concentration is only sensitive to
the mass accommodation coefficient, since the product of the diffusion coefficient and
mass of condensing molecules is practically almost constant. In any case, if proper
rigorous condensation theory is used like in our analysis, the mass accommodation
coefficient of unity can be used. This is recently experimentally shown by Winkler et al.10

(2004). However, even the effect of mass accommodation on source rate (Q) is negli-
gible (Kulmala et al., 2001a).

New particle formation events have been observed in both clean and polluted envi-
ronments (Kulmala et al., 2004). In practise, new particle formation events cannot be
observed unless the source rate of condensable vapours is high enough to induce a15

sufficiently large growth rate for the smallest nucleation mode particles. According to
our analysis, the required source rates of >107 cm−3 s−1 in the most polluted environ-
ment (New Delhi) are 10–100 times larger than those in the European cities (Athens
and Marseille) and roughly four orders of magnitude larger than those for our cleanest
environments (Aboa and SMEAR I).20

A question that immediately arises is, whether the very large difference in the va-
por source rates between the clean and polluted environments is realistic. Potential
candidates for the condensable vapours responsible for the growth of nucleation mode
particles are sulphuric acid and various organic vapours of low volatility. In the lower
troposphere, gaseous sulphuric acid is produced mainly by the reaction of sulphur diox-25

ide (SO2) with the OH radical. The concentration of SO2 varies by a more than three
orders of magnitude between the very clean and polluted environments (Rotstayn and
Lohmann, 2002; Carmichael et al., 2003), whereas the concentration of the OH radical
depends mainly on the intensity of solar radiation. By combining these things together,
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the source rate for gaseous sulphuric acid might well differ by the required four orders
of magnitude between New Delhi and our cleanest environments.

The source rates of condensable organic vapours are very difficult to estimate since
a large number of precursors for these vapours exist, the relevant precursors proba-
bly differ between the different environments, and the formation yields of condensable5

vapours from their precursors are likely to vary with time and location. Globally the
production of secondary organic aerosols is likely to be dominated by biogenic precur-
sors (Griffin et al., 1999; Tsigaridis and Kanakidou, 2003; Lack et al., 2004). Based on
this it seems very likely that the source rate of condensable organic vapours does not
decrease as fast as the source rate of gaseous sulfuric acid, when going away from the10

polluted environments. If this turns out to be true, our results would indicate that the
contribution of sulphuric acid to the particle growth might be substantially larger in ur-
ban environments than in most clean locations. Some support for this view is obtained
by comparing the recent results by Boy et al. (2004) and Stanier et al. (2004), showing
that sulphuric acid is responsible of 10% and almost 100% of the particle growth in15

remote forested and polluted environments, respectively.
Observed growth rates of nucleation mode particles were surprisingly similar be-

tween the different measurement sites, differing on average by less than an order
of magnitude. This can be explained by the close interdependence between Q, CS
and emissions. Namely, sources that emit both gaseous (precursors for condensable20

vapours) and particulate pollutants result in simultaneous increases in both Q and CS.
Sources emitting only gaseous pollutants increase Q, which then leads to larger CS
via an enhanced gas-to-particle transfer. The fact that Q and CS usually change in
concert with each other balances variations in the condensable vapour concentration
(Eq. 5) and thereby in the particle growth rate.25

One interesting feature in our observations is that the growth rate of nucleation mode
particles always exceeds 10 nm h−1 in New Delhi, and that growth rates <1 nm h−1 can
only be observed in the very clean environments. The probable reason for this is the
strong interplay between the nuclei growth and their loss by coagulation: the larger the
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degree of pollution (larger CS), the faster small nuclei must grow to survive the coag-
ulational scavenging onto larger pre-existing particles (Kerminen et al., 2001; Kulmala
et al., 2004). This feature also explains the larger average growth rates observed in
more polluted environments, as well as the somewhat larger variability of the growth in
the cleanest environments.5

5. Conclusions

In this study, the formation and growth of aerosol particles in the nucleation mode have
been investigated using novel analytical tools. From the size spectra the diameter
growth-rates and condensation sinks can be calculated. With this information, the
concentration of condensable vapours and their source rate can be estimated. The10

analysis has been applied to analysis of aerosol formation events in six different sites,
representing very different air pollution conditions.

The estimated source rate of condensable vapours was found to vary by up to four
orders of magnitude between the most polluted (New Delhi) and the cleanest sites
(Northern Finland and Antarctica) considered here. These high variations were nec-15

essary to explain the formation and subsequent growth of new particles in these sites.
Preliminary indications were obtained on that the relative role of sulfuric acid and con-
densable organic vapours in the growth of nucleation mode particles in different envi-
ronments, the sulfuric acid being more important in polluted areas.

Despite large variations in vapour source rates, the growth rate of nucleation mode20

particles did not vary by more than 1–2 orders of magnitude between the different sites.
The primary reason for this is that large vapour source rates usually appear in concert
with large condensation sinks, the overall effect of which is to balance the condensable
vapour concentrations. The average particle growth rates increased, however, with
the level of pollution. This can be explained by the fact the low particle growth rates25

cannot be observed in very polluted environments due to the effective scavenging of
the smallest growing particles by the pre-existing aerosol population.
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The estimation of vapor source rates and concentrations using this quite straight-
forward technique agrees well with detailed box model studies (Kulmala et al., 1998,
2000), illustrating the usefulness of this approach in analyzing the particle size dis-
tribution data. The difference between polluted and clean environments needed for
condensation sinks to obtain proper source rate of vapor molecules and growth rates5

of nucleation mode particles are also in agreement with detailed aerosol dynamic sim-
ulations.

Current estimates on the magnitude of regional and global secondary aerosol for-
mation rely almost entirely on modeling and are subject to large uncertainties. The
approach introduced here provides a simple yet reasonably accurate way of calculat-10

ing condensable vapour source rates based on field data and in very different environ-
ments. As such, our approach might be very useful for closure studies in which the
vapour source rate is calculated independently using either aerosol measurements or
modeled atmospheric chemistry. By combining our approach with suitable chemical
measurements, we could ultimately estimate the relative contribution of condensable15

vapors – particularly of sulfuric acid – to the formation of secondary aerosols in different
atmospheric environments.
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Table 1. Observation sites, number of formation and growth events, minimum and maximum
of condensation sink (CS), growth rate (GR), vapor concentration (C) and source rate of vapor
(Q).

Site # events CS [s−1] GR [nm h−1] C [cm−3] Q [cm−3 s−1]

New Delhi 8 5 ·10−2– 11.6– 15.8 ·107– 0.9 ·107–
26 Oct.–9 Nov. 7 ·10−2 16.0 24.6 ·107 1.4 ·107

2002

Marseille 10 3.2 ·10−3– 1.1– 1.5 ·107– 8.7 ·104–
1–19 July 1.5 ·10−2 8.1 11.1 ·107 1.3 ·106

2002

Athens 7 5.8 ·10−3– 2.3– 3.1 ·107– 2.6 ·105–
10–26 June 1.3 ·10−2 11.8 16.2 ·107 1.6 ·106

2003

Antactica 10 2.4 ·10−4– 0.3– 0.4 ·107– 0.9 ·103–
Jan. 2000/2001 9.6 ·10−4 2.7 3.7 ·107 2.0 ·104

SMEAR I 147 0.6 ·10−4– 0.8– 1.1 ·107– 1.9 ·103–
Värriö 3.6 ·10−3 10.6 14.7 ·107 4.8 ·105

1998–2002

SMEAR II 34 2 ·10−4– 1.3– 2.1 ·107– 5.0 ·103–
Hyytiälä 7 ·10−3 5 8.2 ·107 6.9 ·105

winters 1997–2001
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Fig. 1. Diurnal variation of Antarctica size distribution and total number concentration.
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Fig. 2. Diurnal variation of Athens size distribution and total number concentration.
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Fig. 3. Diurnal variation of Marseille size distribution and total number concentration.
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Fig. 4. Diurnal variation of New Delhi size distribution and total number concentration.

6964

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/4/6943/acpd-4-6943_p.pdf
http://www.atmos-chem-phys.org/acpd/4/6943/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
4, 6943–6966, 2004

On the growth of
nucleation mode

particles

M. Kulmala et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

72        72.25      72.5      72.75      73   
10

2

10
3

10
4

10
5

P
ar

tic
le

 c
on

ce
nt

ra
tio

n 
[1

/c
m

3 ]

Day of Year (DOY)

72        72.25      72.5      72.75      73   
10

−9

10
−8

10
−7

10
−6

D
ia

m
et

er
 [m

]

Day of Year (DOY)

DMPS Hyytiälä 030313

dN/dlogD
p
 [1/cm3]

10    100   1000  10000 100000

Fig. 5. Diurnal variation of Hyytiälä size distribution and total number concentration.
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Fig. 6. Diurnal variation of Väyrriö size distribution and total number concentration.
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